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Abstract: Since the state-of-the-art deep learning algorithms demand a large training dataset, which
is often unavailable in some domains, the transfer of knowledge from one domain to another
has been a trending technique in the computer vision field. However, this method may not be a
straight-forward task considering several issues such as original network size or large differences
between the source and target domain. In this paper, we perform transfer learning for semantic
segmentation of off-road driving environments using a pre-trained segmentation network called
DeconvNet. We explore and verify two important aspects regarding transfer learning. First, since the
original network size was very large and did not perform well for our application, we proposed a
smaller network, which we call the light-weight network. This light-weight network is half the size to
the original DeconvNet architecture. We transferred the knowledge from the pre-trained DeconvNet
to our light-weight network and fine-tuned it. Second, we used synthetic datasets as the intermediate
domain before training with the real-world off-road driving data. Fine-tuning the model trained with
the synthetic dataset that simulates the off-road driving environment provides more accurate results
for the segmentation of real-world off-road driving environments than transfer learning without
using a synthetic dataset does, as long as the synthetic dataset is generated considering real-world
variations. We also explore the issue whereby the use of a too simple and/or too random synthetic
dataset results in negative transfer. We consider the Freiburg Forest dataset as a real-world off-road
driving dataset.

Keywords: semantic segmentation; transfer learning; autonomous; off-road driving

1. Introduction

Semantic segmentation, a task based on pixel-level image classification, is a fundamental approach
in the field of computer vision for scene understanding. Compared to other techniques such as object
detection in which no exact shape of object is known, segmentation exhibits pixel-level classification
output providing richer information, including the object’s shape and boundary. Autonomous driving
is one of several fields that needs rich information for scene understanding. As the objects of interest,
such as roads, trees, and terrains, are continuous rather than discrete structures, detection algorithms
often cannot give detailed information, hindering the performance of autonomous vehicles. However,
this is not true of semantic segmentation algorithms, as all the objects of interests are detected on
a pixel-by-pixel basis. Nonetheless, to use this technique, one needs careful annotations of each object
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of interest in the images along with a complex prediction network. Despite these challenges, there has
been tremendous work and progress in object segmentation in images and videos.

Convolutional Neural Networks (CNNs) such as Alexnet [1], VGGnet [2], and GoogleNet [3] have
been used extensively in several seminal works in the field of semantic segmentation. For semantic
segmentation, either existing classification networks are adopted as a baseline or completely new
architectures are designed from scratch. For the segmentation task that uses an existing network
as a baseline, the learned parameters on that network are used as a priori information. Semantic
segmentation can also be considered as a classification task in which each pixel is labeled with the
class of the corresponding enclosing object. The segmentation algorithm can either be single-step or
multi-step. In a single-step segmentation process, only the classification of pixels is carried out, and
the output of the segmentation network is considered to be the final result. When the segmentation
is a multi-step process, the network output is subjected to a series of post-processing steps such
as conditional random fields (CRFs) and ensemble approaches. CRFs provide a way of statistical
modeling for the structured prediction. In semantic segmentation, CRFs help to improve the boundary
delineation in the segmented outputs. Ensemble approaches help to pool the strengths of several
algorithms. The results of these algorithms are fused using some rules to achieve better performance.
However, these techniques increase the computational cost, making them inapplicable to our problem
of scene segmentation for autonomous driving. Therefore, the application of these post-processing
steps depends upon the type of domain. The performance and usefulness of the segmentation
algorithms are evaluated on the basis of parameters such as accuracy over a benchmark dataset,
algorithm speed, boundary delineation capability, etc.

As segmentation holds its importance in the identification/classification of objects, investigating
the abnormalities, etc., it applies to a number of fields, such as agriculture [4,5], medicine [6,7],
and remote sensing [8–10]. A multi-scale CNN and a series of post-processing techniques are applied
in [11] to provide a scene labeling on several datasets. The concept of both segmentation and detection
is used in [12,13] to classify the images in a pixel-wise manner. Although there has been a lot of
work in semantic segmentation, the major improvement was recorded after [14], which demonstrates
the superior results on the Pascal Visual Object Classes (VOC) dataset. It performs the end-to-end
training and supervised pre-training for segmentation avoiding any post-processing steps. In terms
of architecture, it uses the skip layers method to combine the coarse higher-layer information with
fine lower-layer information. The methods described in [15,16] are based on an encoder–decoder
arrangement of layers that use the max-pooling indices transferred to the decoder part making the
network more memory efficient. In both of these works, the mirrored version of the convolutional part
acts as the deconvolutional or decoder part. The concept of dilated convolution to avoid information
loss due to the pooling layer was used in [17]. A fully connected CRF is used in [18] to enhance the
object representation along the boundary. A CRF is used as a post-processing step that improves the
segmentation results produced by the network. An enhanced version of [18] is used in [19] which is
based on spatial pyramid pooling and the concepts of dilated convolution presented in [17]. A new
technique using a pooling called pyramid pooling is introduced in [20] so as to increase the contextual
information along with the dilated convolution technique.

All the works mentioned above are evaluated on several benchmark datasets, and one is said to
be better than another based on the performance on those datasets. However, in real-life scenarios,
there are several areas in which adequate training data are not available. The deep convolutional
neural networks require huge amount of training data so that they can generalize well. Lack of enough
training data in the domain of interest is one of the main reasons for using Transfer Learning (TL).
In TL, the knowledge from a domain, known as the source domain, is transferred to the domain of
interest, known as the target domain. In this technique, the deep neural network is first trained in
the domain where enough data are available. After this, the useful features are incorporated into the
target domain as a priori information. This technique is effective and beneficial when the source and
target domain tasks are comparable. The nature of the convolutional neural network to learn general
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features through lower layers and specific features through higher layers makes the technique of TL
effective [21,22]. In particular, in fields such as medicine and remote sensing where datasets with
correct annotations are rarely available, the transfer learning technique is a huge benefit. In [23,24],
the transfer learning technique is applied for the segmentation of brain structures in brain images from
different imaging protocols. Fine-tuning of fast R-CNN [25] for traffic sign detection and classification
for autonomous vehicles is performed in [26].

Apart from finding different applications where transfer learning might be used, there has been
a constant research effort in effective transfer of knowledge from one domain to another. As it
is never the case that all of the knowledge learned from the source task is useful for the target
task, deciding what to transfer and how to transfer it holds an important role for the optimum
performance of the TL approach. A TL method which automatically learns what and how to transfer
from previous experiences is proposed in [27]. A new way of TL for segmentation is devised in [28],
which transfers the learned features from a few strong categories, using pixel-level annotations to
predict the classes that do not have any annotations (known as weak categories). For a similar transfer
scenario, Hong et al. [29] proposes an encoder–decoder architecture combined with an attention model
to semantically segment the weak categories. In [30], an ensemble technique, which is a TL approach
that trains multiple models one after the other, is demonstrated when the source and target domains
have drastic differences.

In our work, we use the TL approach for semantic segmentation specifically for off-road
autonomous driving. We use the semantic segmentation network proposed in [16] as a baseline
network. This network is trained with the Pascal VOC datasets [31] for segmentation. This domain has
a large difference from the one that we are interested in (the off-road driving scene dataset). On the
other hand, the off-road driving scene contains fewer classes compared to the Pascal VOC datasets,
consisting of 20 classes. Because of this, we propose decreasing the network size, and performing
transfer learning on the smaller network. To bridge the difference between the real-world off-road
driving scene and Pascal VOC datasets, we use different synthetic datasets as an intermediate domain
which might help in performance boosting for the data-deprived domain. Similarly, to correspond to
the lower complexity and the latency required for the off-road autonomous driving domain, a smaller
network is proposed. Motivated by previous TL approaches in CNN [22,32] and auto-encoder neural
networks for classification [33], we transfer the trained weights from the original network to the
corresponding layers in the proposed smaller network. However, while most of the state-of-the-art
TL methods perform fine-tuning without making any changes to the original architecture (with the
exception of the last layer), to the best of our knowledge, this is the first attempt to perform transfer
learning from a bigger network to a smaller network, which is helpful to address the two important
requirements of autonomous driving. With several experiments using synthetic and real-world
datasets, we verify that the network size trained in the source domain may not transfer the best
knowledge to the target domain. However, a smaller chunk of the same architecture might work better
based on the complexity embedded in the target domain. On the other hand, this work also explores
the effect of using various synthetic datasets as an intermediate domain during TL by assessing the
performance of the network on a real-world dataset.

The main contributions of this paper are listed as follows:

• We propose a new light-weight network for semantic segmentation. Basically, the DeconvNet
architecture is downsampled to half the original size which performs better for the off-road
autonomous driving domain;

• We use the TL technique to segment the Freiburg Forest dataset. During this, the light-weight
network is initialized with the trained weights from the corresponding layers in the Deconvnet
architecture;

• We study the effect of using various synthetic datasets as an intermediate domain to segment the
real-world dataset in detail.
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The rest of the paper is organized as follows. We briefly review the background and related work
in the semantic segmentation of off-road scenes in Section 2. The details of the proposed methods,
including Deconvnet segmentation network and our proposed light-weight network, are explained
in Section 3. In Section 4, we describe all the experiments and the corresponding results including,
the descriptions of the datasets used. Section 5 provides the brief analysis and discussion about the
obtained results. The final section of the paper includes our conclusions and notes on future work.

2. Background and Related Work

2.1. Background

2.1.1. Convolutional Neural Networks (CNN)

The simple CNN architecture is composed of five important layers: the input layer, convolutional
layer, activation layer, pooling layer, and fully connected layer. For the purpose of classification,
a series of these layers can be used on the basis of the complexity of the dataset under consideration.
The convolutional layer extracts the structural and spatial relationships from the image. According
to [34], in order to improve the learning task, this layer leverages three important ideas: sparse
interactions, parameter sharing, and equivalent representations. The convolutional layer is followed
by a sub-sampling layer called the pooling layer. This layer is supposed to capture the high-level
information of feature maps in compressed form. Thus, it helps to make the features invariant to
smaller transitions and translations which results in CNNs being capable of focusing on the useful
properties and ignoring the less important features in the feature space. Max-pooling is the famous
pooling technique which takes the maximum value of pixels within a defined boundary as its output.
The pooling layer may either alternate with convolutional layer or reside sparsely in the network,
depending upon the nature of the classification task.

Another important operation within a CNN architecture is activation. This layer, called the
activation layer, introduces the non-linearity in input–output relationship, making CNN a universal
function approximator. The last layer in most classification-based CNN architecture is the fully
connected layer. The fully connected layer takes the flattened data as input, and is responsible for
mixing the signals from each dimension so as to introduce the generalization. However, in most
segmentation tasks, this layer is not suitable as it increases the computational cost. CNNs are trained
in the same way as multilayer perceptrons, which are trained using back propagation algorithm. Back
propagation is based on minimizing the cost function with respect to the weight and adjusting those
weights based on the gradient as follows:

L =
1
N

N

∑
i

p(yi | Xi), (1)

where N is the total number of images or training samples per batch, Xi represents the ith input
sample, and yi represents the corresponding label. p(.) is the probability of correct classification for
corresponding input data. For any layer l, Wt

l is the weight vector at lth layer at time instant t, and Ut
l

is the required update in weight. If αl is momentum, and µ is the learning rate, learning in the network
occurs as follows:

Ut+1
l = αUt

l − µ
∂L

∂Wl
(2a)

Wt+1
l = Wt

l + Ut+1
l . (2b)
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2.1.2. Transfer Learning

As specified earlier, TL is a way of utilizing the knowledge of a trained model to solve the
problem at hand. In the case of the CNN, the network trained on one domain, called the source
domain, might have learned some features that would also be relevant to another domain, called
target domain. Therefore, the network with the learned features in the source domain could be
a better baseline network to accomplish the task in the target domain. Hence, TL involves the use
of an existing trained model, modifying its learned features, called knowledge, into target domain
features such that it gives acceptable test performance on the target domain. On the basis of this,
several TL techniques are notable. In [35], Pan et al. categorize the TL approaches as inductive
transfer learning, transductive transfer learning, and unsupervised transfer learning. However, in deep
learning, we can also distinguish them differently as: the fine-tuning approach, the feature extraction
approach, multitask learning, and meta learning. In the fine-tuning approach, the nature of the CNN
to learn general features through the lower layers and specific features through the higher layers is
better utilized. The weights learned by the original trained model in lower layers are frozen as they are
related to the general properties of images and have greater similarity with the general features of data
in the target domain. Only the few higher layers are modified with the dataset in the target domain.
The number of higher layers being trained may vary depending on the data distribution differences
between the source and target domains. In the feature extraction approach, only the most important
features from the source domain that might better represent the features in the target domain are
extracted, and the model is trained with those features mixed with target domain dataset. Multitask
learning, on the other hand, trains a model on multiple source tasks so as to increase the generalization
capability of the network and is finally fine-tuned with the target domain. Meta learning in TL helps
the model to learn about what to learn so that the knowledge will be best fitted for the target domain.
In this work, we are dealing with a fine-tuning approach.

2.2. Related Work

With the advent of powerful GPU technology, CNN-based deep learning techniques have been
receiving much attention. Semantic segmentation is one of the fields benefiting from this change.
Equally, the interest in intelligent autonomous vehicles has been growing and there has been a large
amount of research over recent years. The segmentation of road scenes holds a major role in the
functionality of such systems. There have been many works directed at city road environment
segmentation. However, there have only been a few works for off-road driving scene segmentation.
Daniel et al. perform the semantic mapping for off-road navigation using custom convolutional
networks in [36]. In [37], a deep neural network is applied in order to classify the off-road scene as
trail and non-trail parts using image patches. It successively applies the dynamic programming to
delineate the light-weight trail from sub-light-weight network output. In [38], the TL approach is used
to semantically segment the off-road scene using the network trained with on-road scenery. Our work
is different in the sense that [16] is trained with Pascal VOC images and we transfer the knowledge to
the target, which has very different data distributions. Furthermore, we change the original network
size, proposing a smaller network that transfers the optimum knowledge considering the real-time
issues required by the autonomous vehicle.

3. Proposed Methods

3.1. Segmentation Network Structure

The first part of this work aims at finding the light-weight network structure that suits the target
domain. This process is largely dependent upon the complexity of the target domain and upon the
extent of the source and target domain differences. While designing the autonomous driving systems,
two aspects come into play: the safety and processing speed of the autonomous system software.
Safety can be seen from a much wider point of view, which is mostly the function of vehicle hardware
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design and decisions made by the system software. As a result of the nature of autonomous vehicles,
a fast processing speed is required for scene understanding and inferencing which ultimately gives
robust control over decision making of the vehicle. We consider this requirement to be very important
in this work, thus we aim for the smallest possible network size with the highest possible accuracy.
In addition to this, transferring all the weights from large pre-trained networks provided sub-optimal
results for our synthetic and real-world dataset as the target domains are simpler than the source
domain. Therefore, to use the best size of convolutional network (which achieves a suitable processing
speed) as well as having an acceptable accuracy level, we propose a smaller convolutional network,
called the light-weight network, taking [16] as a base model. Our proposed network, which better suits
our application, is half the size of the original Deconvnet architecture. Figure 1 shows the structure of
our light-weight network architecture.

The DeconvNet [16] is learned on top of the VGG-16 network [2] and takes 2D images 224 × 224
pixels in size. The deconvolutional part is a mirrored version of the convolutional part and contains
13 layers on both the convolutional and deconvolutional side. The convolutional part is converged
into two fully connected layers augmented at the end to impose class-specific projections. It is
trained using a two-stage training procedure in which the first step involves training with easy
examples. The second stage involves fine-tuning of the network learned in first stage with more
challenging images. Our light-weight network consists of seven convolutional layers and three pooling
layers towards the convolutional side. The deconvolutional network is the mirrored version of the
convolutional network. The major modification in architecture [16] is the removal of some intermediate
layers, including fully connected layers, which improves the computational complexity of the network.
Both the architectures, DeconvNet and light-weight, are called encoder–decoder-based architectures,
in which the convolutional part downsamples and the deconvolutional part upsamples the feature
maps. Such architectures allow the use of max-pooling indices during upsampling which helps to
obtain better segmentation maps with preserved global context information. However, the use of
max-pooling indices slightly increases the computational cost. The original DeconvNet architecture
and proposed light-weight network architectures are shown in Figure 1. The details, including each
layer’s output and the kernel size of our light-weight network architecture, are shown in Table 1.

Convolutional network Deconvolutional network

224x224

112x112

56x56
28x28

56x56

112x112

224x224

Max
pooling

Max
pooling

Max
pooling

Max
pooling

Max
pooling

14x14 7x7 1x1 1x1
7x7 14x14

Convolutional network

28x28

224x224

112x112

56x56

Max
pooling

Max
pooling

Max
pooling

Deconvolutional network

56x56

112x112

224x224

28x28

Figure 1. Top: Original DeconvNet architecture, Bottom: Proposed light-weight network architecture.

In the following two sections, we do a comparative study of the original and proposed network
in terms of computational complexity and latency.
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3.1.1. Computational Complexity

For any CNN, the total computational complexity of the convolutional layer can be expressed as
follows [39]:

O
( d

∑
l=1

nl−1s2
l nlm2

l

)
. (3)

In Equation (3), l represents the corresponding layer; nl−1 represents the number of filters in the
(l− 1)th layer; sl represents the spatial size (length) of filter in the lth layer; and ml is the spatial size of
the output feature map. DeconvNet consists of 13 convolutional layers and 13 deconvolutional layers,
whereas the proposed light-weight network consists of seven convolutional and seven deconvolutional
layers. Incorporating the fact that the convolution and deconvolution operations are the same in
terms of computation, the overall computational complexity for both networks is shown in Table 2.
The proposed light-weight network has a complexity 1.56 times lower compared to that of the original
network. This reduction in complexity is in favor of the low latency requirement of autonomous driving.

Table 1. Detailed structure of proposed light-weight network architecture. Note that C is the number
of classes.

Layer’s Name Kernel Size Stride Pad Output Size

input - - - 224× 224× 3

conv1-1 3× 3 1 1 224× 224× 64
conv1-2 3× 3 1 1 224× 224× 64

pool1 2× 2 2 0 112× 112× 64

conv2-1 3× 3 1 1 112× 112× 128
conv2-2 3× 3 1 1 112× 112× 128

pool2 2× 2 2 0 56× 56× 128

conv3-1 3× 3 1 1 56× 56× 256
conv3-2 3× 3 1 1 56× 56× 256
conv3-3 3× 3 1 1 56× 56× 256

pool3 2× 2 2 0 28× 28× 256

unpool3 2× 2 2 0 56× 56× 256

deconv3-1 3× 3 1 1 56× 56× 256
deconv3-2 3× 3 1 1 56× 56× 256
deconv3-3 3× 3 1 1 56× 56× 128

unpool2 2× 2 2 0 112× 112× 128

deconv2-1 3× 3 1 1 112× 112× 128
deconv2-2 3× 3 1 1 112× 112× 64

unpool1 2× 2 2 0 224× 224× 64

deconv1-1 3× 3 1 1 224× 224× 64
deconv1-2 3× 3 1 1 224× 224× 64

output 1× 1 1 1 224× 224× C

3.1.2. Frame Rate

The scene segmentation algorithms for autonomous driving require a frame rate as high as
possible. In this work, we aimed to find a network architecture that provides a better frame rate
without compromising the accuracy. We performed this test on a Nvidia Quadro GP100 GPU with
16G memory. In this setup, while maintaining the comparable accuracy, our proposed light-weight
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network has a frame rate of 21 Frames Per Second (fps), which is better than that of the original
network (17.7 fps).

Table 2. Complexity comparison of the two networks.

Network Complexity Ratio

DeconvNet O (2.914×1010)
O (1.56)

Light-weight O (1.867× 1010)

3.2. Training

The second part of this work is about actual learning and fine-tuning the network with synthetic
and real-world datasets. We fine-tuned our proposed light-weight network with synthetic datasets
as well as with a real-world dataset and report the result. Here, we explore the advantages and
disadvantages of using a synthetic dataset. We used the synthetic dataset as the intermediate domain
and the real-world dataset as the final domain. In the first training method, we performed transfer
learning using only the real-world data and observed the results. In the second training technique,
we trained the light-weight network using the synthetic dataset as an intermediate domain. In this
work, we are interested in seeing the effectiveness of our segmentation results in a real-world scenario
by fine-tuning the light-weight network trained with synthetic dataset. To do so, we fine-tuned
the original model with the synthetic dataset as a first step, and transferred this knowledge for the
real-world dataset as a final step. As we are interested in the off-road autonomous driving scenario,
we focused on how the transfer learning works in order to segment the real-world dataset with and
without using synthetic dataset.

In this work, we used the softmax loss as an optimization function available in Caffe
framework [40]. This loss function is basically a multinomial logistic loss that uses softmax of
the output in the final layer of the network. The softmax function is the most common function
used in the output of CNNs for classification. It is used as a layer in CNN architecture that takes
an N-dimensional feature vector and produces the probabilistic values as output in the range (0, 1).
Considering [x1, x2, x3, ..., xN ] as the input to the softmax layer and [o1, o2, o3, ..., oN ] as its output,
the input–output mapping occurs as in Equation (4).

oi =
exi

∑N
y=1 exy

∀i ∈ 1...N. (4)

Therefore, in the classification or segmentation of input images, the softmax layer produces the
probabilistic values for all possible classes. On the basis of these probabilities, any test data (or pixel
in the case of segmentation) is assigned to the class with the maximum probabilistic value. Consider
(x1, y1), (x2, y2), ......, (xn, yn) to be any n number of training points ,where x denotes the training data
and y denotes the corresponding label. In Caffe [40], the softmax loss is defined in a composite form
by applying multinomial logistic loss to the softmax layer’s output. In Equation (5), the softmax loss is
defined as a cost function to be optimized.

J(θ) = − 1
n

 n

∑
i=1

c

∑
j=1

1 {yi = j} log
eθT

j xi

∑c
k=1 eθT

k xi

 , (5)

where c represents the total number of classes. The parameter θT represents the transpose of the weight
matrix of the network at that instant in time. With this loss function, the training was performed using
the stochastic gradient descent method with a learning rate of 0.001, a momentum of 0.9, and a weight
decay of 0.0005 in Nvidia Quadro GP100 GPU with 16G memory.
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4. Experiments and Results

4.1. Dataset Description

We performed experiments with four different datasets in which three are simulated datasets
and one is a real-world off-road dataset. The simulated datasets range from simple two-class datasets
to more complex four-class datasets. These datasets were generated considering different real-world
aspects such as surface reflectivity of tree trunks or the ground, the shadowing effect, time of the
day, etc. The real-world dataset is the off-road autonomous vehicle dataset called Freiburg Forest
dataset [41]. In the section below, we describe each of them briefly.

4.1.1. The Synthetic Dataset

Three sets of synthetic data were used which were generated using a specially designed simulator
enabled by the MSU Autonomous Vehicle Simulator (MAVS) [42,43]. This simulator is a physics-based
sensor simulator for ground vehicle robotics that includes high-fidelity simulations of LiDAR , cameras,
and several other sensors. In this work, these datasets are considered to assess the performance of
segmentation, transferring the knowledge from the pre-trained convolutional network to the simulated
dataset. In addition, we assess the segmentation performance by transferring the knowledge from the
synthetic dataset to a real-world off-road driving scenario. As the off-road vehicle domain has very
little data to use for training and it is a domain requiring the highest possible level of accuracy, a larger
volume of annotated datasets are required. In order to fulfill this requirement, the use of a synthetic
dataset can be a help.

The Two-Class Synthetic Dataset

This dataset is the simplest synthetic dataset containing two classes: Ground and Tree.
This dataset does not strongly incorporate the characteristics of real-world scenes such as time of
the day, shadowing, reflectivity, etc. However, it considers the properties of tree trunks, leaves,
and the ground mostly in terms of color and structure. The dataset consists of 5674 images of size
640× 480 pixels. We separated 80 percent into the training set and 20 percent into the validation set
with no overlap. Some samples of this dataset are shown in Figure 2.

Figure 2. Sample images from two-class synthetic dataset. Best viewed in color.

The Four-Class High-Definition Dataset

This dataset is more complex than the previous two-class dataset. It considers a more complex
environment including vegetative structure as well as more realistic forest scenes. The increased
complexity of this dataset is mostly due to fine vegetative structures sparsely distributed on the
ground. Additionally, we consider the flowering as well as non-flowering vegetation and trees, making
this dataset both realistic and complex at the same time. It simulates sky, trees, vegetation, and the
ground as four different classes. In total, we have 1700 high-definition images of size 1620× 1080
pixels; we separated 80 percent into the training set and 20 percent into the validation set with no
overlap. Some typical images from this synthetic dataset are shown in Figure 3.
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Figure 3. Three sample images from four-class high-definition dataset. best viewed in color.

The Four-Class Random Synthetic Dataset

Compared to the other two synthetic datasets, this dataset is more natural as more real-world
variations are considered. This also includes sky, trees, vegetation, and the ground as the classes for
off-road driving scene. We use total 10,726 images of 224× 224 pixels. In the MAVS simulator, the use
of randomized scenes with physics-based simulation of cameras and environments allows for the use
of a wide variety of training data. MAVS considers features such as different terrain structure, different
time of the day, and haziness of the atmosphere quantified by turbidity [43]. As mentioned in [43],
five different times of the day and five different turbidity values are considered, producing 25 unique
lighting scenarios in the images. On the other hand, the random dataset includes images from three
different environments: an American Southeast forest ecosystem, an American Southeast meadow
ecosystem, and an American Southwest desert ecosystem. Because of this set up, this dataset has much
more variance than the previous two synthetic datasets. Some sample images from this dataset are
shown in Figure 4.

Figure 4. Sample images from four-class random synthetic dataset. Best viewed in color.

4.1.2. The Real-World Dataset

We use Freiburg Forest dataset [41] as real-world dataset. These were collected at 20 Hz with
a resolution of 1024× 768 pixels on three different days to acquire the variability in data caused by
lighting conditions. However, in our experiments, we pre-processed the dataset as per our requirement.
Before feeding them into our proposed light-weight network, the images were cropped into 224× 224
size as a pre-processing step to make them compatible with the input layer as well as to acquire
simple data augmentation. In [40], cropping can be performed randomly to extract an image patch
of a desired dimension. The images in the dataset are in different formats such as RGB, NIR , depth
images. For this work, we use the RGB image format only. The dataset includes six different classes:
Obstacle, Trail/Road, Sky, Grass, Tree, and Vegetation. While experimenting, we considered the
tree and vegetation as a single class as suggested in [41]. Therefore, in terms of training, it is only
a five-class dataset. Some sample images from this dataset pool are shown in Figure 5.
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Figure 5. Sample images from Freiburg Forest dataset. Best viewed in color.

4.2. Segmentation of the Real-World Dataset with Transfer Learning

In this experiment, we train our light-weight network with the pre-trained weights from
DeconvNet architecture. The DeconvNet architecture was originally trained with the Pascal VOC
dataset (as a benchmark dataset for segmentation). To transfer the knowledge from this architecture,
we initialize our proposed network with the pre-trained weights from DeconvNet corresponding to
the existing layers in the light-weight network while ignoring the weights of the remaining layers.
We apply fine-tuning by learning up to two layers completely from scratch towards the deconvolutional
side of our light-weight network.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Segmentation of the Freiburg Forest dataset (a–c): test images, (d–f): corresponding
segmented images using DeconvNet, (g–i): corresponding segmented images using the proposed
light-weight network. Note that the color code for classes is: yellow: tree, green: road, blue: sky, red:
ground, black: obstacle. Best viewed in color.
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The proposed algorithm achieved 93.1 percent overall accuracy with only the outermost layer
learning from scratch and 94.43 percent accuracy with the two outermost layers learning from scratch
with a learning rate of 0.01. All the other layers are slowly modified with a learning rate of 0.001.
This way of fine-tuning typically means adopting the DeconvNet to the new domain, where the
general properties are slowly modified/learned and specific properties are quickly modified/learned.
The concern about which layers are to be learned from scratch is an open-ended question and is mostly
the function of diversity between the source and target domain. The results produced by the model
with the best accuracy (the one that is trained with the two outermost layers learned from scratch) are
shown in Figure 6.

4.3. Utilizing the Synthetic Dataset

In this experiment, we use TL approach somewhat differently. This training approach is based on
training the network multiple times with multiple domains in order to slowly learn the target domain.
We use three different synthetic datasets as the intermediate domain and observe the performance
of fine-tuning for the real-world dataset. The obtained overall accuracy of segmentation for all three
sets of synthetic datasets are shown in Table 3. The accuracy of the four-class high-definition dataset
is lower compared to the other two synthetic datasets. As specified in Section 4.1.1, this dataset has
the fine vegetative structures sparsely distributed on the ground which makes them difficult to detect.
In addition, the vegetation and the trees are with and without flowers, which makes this dataset
realistic and complex at the same time. This complexity inherent to the four-class synthetic dataset
resulted into the lower accuracy.

Table 3. Segmentation accuracy on the synthetic dataset. TL—Transfer Learning.

Data Method DeconvNet Light-Weight

Synthetic

TL on two-class 97.62 (%) 99.15 (%)

TL on four-class high-definition 65.61 (%) 75.71 (%)

TL on four-class random 73.23 (%) 91.00 (%)

4.3.1. The Two-Class Synthetic Dataset

In this experiment, we first trained our proposed light-weight network with the pre-trained
DeconvNet weights using the two-class synthetic dataset. As we specified in the earlier section, this
dataset contains trees and ground as two classes and is a simple dataset. This dataset just considers
the autonomous driving scenario in terms of color. The tree class is represented with a gray and
green color, and the ground with a yellowish color, as shown in Figure 2. Structurally, the trees have
minor variations and the ground is uniform. After training and testing with our proposed light-weight
network, we obtained 99.15 percent overall pixel-wise accuracy with this synthetic dataset. We used
the learning rate of 0.01 for the two outermost layers and 0.001 for all the other layers. We show some
segmented results of this synthetic dataset in Figure 7.

The model trained with this two-class synthetic dataset is again fine-tuned with the real-world
Freiburg dataset. This time, only the outermost layer of the light-weight network was learned from
scratch with a learning rate of 0.01 and all the other layers with 0.0001. As shown in Table 4,
we obtained 94.06 percent overall accuracy, which is somewhat below the accuracy given by the
previous experiment.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Segmentation of the two-class synthetic dataset (a–c): test images, (d–f): corresponding
segmented images using DeconvNet, (g–i): corresponding segmented images using the proposed
light-weight network. Note that the color code for classes is: yellow: tree, green: ground. Best viewed
in color.

4.3.2. The Four-Class High-Definition Dataset

In this experiment, we trained our light-weight network with the pre-trained DeconvNet weights
using the four-class synthetic dataset. This dataset is more complex than the two-class synthetic
dataset in terms of the number of classes and their structure. The four classes in this dataset include
ground, vegetation, tree, and sky. The vegetation includes smaller grass and/or bush like structures
and contains variations such as flowers or no flower within it. After training and testing our proposed
light-weight network with this dataset using the same learning rate setup as in the two-class dataset,
we obtained 75.71 percent overall test accuracy. Some results of segmentation of the synthetic dataset
are shown in Figure 8.

As in the previous experiment, the model trained with the four-class high-definition dataset is
fine-tuned using the Freiburg Forest dataset. Only the outermost layer of the light-weight network was
learned from scratch with a learning rate of 0.01 and all the other layers with 0.0001. We obtained the
improved segmentation performance when compared with the results that did not use the synthetic
dataset as well as with that of the two-class synthetic dataset. This improvement is obvious as the
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four-class high-definition dataset considers more realistic properties of the real-world environment in
terms of number of classes and intra-class variability.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Segmentation of the four-class high-definition dataset (a–c): test images, (d–f): segmented
images using DeconvNet, (g–i): segmented images using proposed light-weight network. Note that the
color code for classes is: green: ground, red: vegetation, yellow: tree, blue: sky. Best viewed in color.

4.3.3. The Four-class random synthetic dataset

In this experiment, we trained our proposed light-weight network with the pre-trained DeconvNet
weights using the four-class random synthetic dataset. We used the same learning rates as in the
experiment with the two-class synthetic dataset. As specified earlier, this dataset is complex in the
sense that it considers different factors to make it more realistic. Some factors considered are different
time of the day, different terrain surface, varying tree structure, etc. As in the dataset used in previous
experiment, it also contains four classes including ground, vegetation, tree, and sky. After training and
testing our proposed light-weight network with this dataset, we obtained 91 percent overall accuracy.
Some of the results of the segmentation of the synthetic dataset are shown in Figure 9.

Again, as with the four-class high-definition dataset, the model trained with the four-class random
synthetic dataset is fine-tuned using the real-world Freiburg dataset. In this part, only the outermost
layer of the light-weight network was learned from scratch with a learning rate of 0.01 and all of
the other layers with 0.0001. As shown in Table 4, the performance of the light-weight network for
transfer learning with this dataset decreased somewhat compared to the previous three experiments.
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As stated above, consideration of the real-world properties for the forest environment is increased in
this dataset. However, the reduction in the overall accuracy could be due to increased variation among
the dataset that caused the network to learn the features that are less correlated to the target domain.
This phenomenon is sometimes called negative transfer. In Figure 10, we show the comparative results
for all the experiments.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Segmentation of the four-class random dataset (a–c): test images, (d–f): segmented images
using DeconvNet, (g–i): segmented images using proposed light-weight network. Note that the color
code for classes is: green: ground, red: vegetation, yellow: tree, blue: sky. Best viewed in color.

5. Result Analysis and Discussion

Table 4 shows the comparative results of the proposed method including the baseline [16] method
in terms of overall accuracy. We can analyze these results in terms of two aspects: network and TL
method. Our proposed light-weight network gives much better results compared to the DeconvNet for
all the four experiments. Most surprisingly, the results obtained are much better after stripping down
the network to a half of its original size. This result favors the requirement of autonomous driving
which needs higher accuracy with reduced latency. On the other hand, if we analyze the table in terms
of TL method, we can see mixed results. For the TL with DeconvNet, the use of the synthetic dataset as
intermediate domain led to a negative performance. Whereas, with our proposed light-weight network,
we achieved an increased performance after using the four-class high-definition datasets compared to
that which did not use the synthetic dataset. For both the datasets, the two-class synthetic and the
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four-class random synthetic, the performance decreased slightly. The two-class synthetic dataset is
a simpler dataset which does not take into account the real-world environmental effects in terms of
both the number of classes and their properties. This dataset just increased the volume with no helpful
information learned before moving into the target domain causing negative transfer performance.
On the other hand, the random dataset includes images from different environments. It includes
the data from three different environments: an American Southeast forest ecosystem, an American
Southeast meadow ecosystem, and an American Southwest desert ecosystem with their various
lighting conditions. These different environments caused a high level of randomness and a lower
correlation to the target domain; this dataset also added no helpful knowledge while doing the transfer
learning. However, it also caused the negative transfer. The four-class high-definition dataset gave
the positive TL performance with the accuracy of 94.59% on the Freiburg test set. Different from the
two other datasets, this dataset has higher correlation with the target domain. Additionally, the huge
randomness caused by the various ecosystems in the four-class random dataset is not available in
the four-class high-definition dataset. The forest and ground structure have comparatively more
similarity with that of the target domain which causes the improved performance while training with
the Freiburg dataset.

Table 4. Quantitative results produced by DeconvNet and the proposed network for various TL
experiments. Shading indicates the improvement of one method over another.

Data Method DeconvNet Light-Weight

Freiburg

W/O synthetic data 73.65(%) 94.43(%)
After using two-class synthetic 66.62(%) 94.06(%)

After using four-class high-definition 68.7(%) 94.59(%)
After using four-class random synthetic 68.14(%) 93.89(%)

We show the confusion matrices for each experiment performed with the proposed light-weight
network in Table 5. Each entry is the percentage measurement of either the correctly or falsely classified
number of pixels in all test images. We can see the obstacle class having the lowest accuracy and the
sky class having the highest accuracy in each TL experiment. The cause for the low accuracy regarding
obstacles is that the pixels belonging to this class are very limited in the training datasets compared
to the other classes. In addition, the obstacle in the training images have less structural uniformity.
This results in the network learning less about the obstacle class causing a biased prediction in favor of
classes having a higher number of pixels.



Sensors 2019, 19, 2577 17 of 21

Input image Ground truth W/O synthetic 2 class synthetic 4 class HD 4 class random

(a)

(b)

(a)

(b)

(a)

(b)

Figure 10. Examples to show that the light-weight network produces better results than DeconvNet
for each of the experiments. Note that each pair of rows (a,b) represents the results produced by
DeconvNet and the proposed light-weight network, respectively. Best viewed in color.
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Table 5. Confusion matrices of the test results produced by the proposed network for different TL
experiments on the Freiburg Forest dataset. Note that each entry is an overall percentage. (Top left:
without using synthetic dataset, top right: using two-class synthetic dataset, bottom left: using
four-class high-definition synthetic dataset, bottom right: using four-class random synthetic dataset).

Class Obst
acle

Grass Road Tree Sky

Obst
acle

60.84 0.11 0.00 0.11 0.03

Grass 12.99 90.83 13.60 3.18 0.09

Road 5.58 3.11 83.09 0.98 0.17

Tree 19.28 5.62 2.44 93.58 4.62

Sky 1.28 0.30 0.84 2.12 95.07

Class Obsta
cle

Grass Road Tree Sky

Obsta
cle

55.69 0.10 0.01 0.09 0.04

Grass 14.92 91.07 12.89 3.33 0.15

Road 4.76 3.01 84.28 1.02 0.23

Tree 23.06 5.35 2.23 93.32 4.31

Sky 1.54 0.43 0.577 2.21 95.23

Class Obst
acle

Grass Road Tree Sky

Obst
acle

59.43 0.10 0.01 0.10 0.03

Grass 16.43 89.89 11.31 2.99 0.05

Road 4.85 3.47 86.72 1.07 0.21

Tree 18.16 6.17 1.43 93.41 4.50

Sky 1.10 0.35 0.50 2.40 95.18

Class Obsta
cle

Grass Road Tree Sky

Obsta
cle

59.05 0.11 0.01 0.11 0.03

Grass 15.22 90.42 11.75 3.21 0.25

Road 4.16 3.38 85.57 1.03 0.36

Tree 19.20 5.81 2.24 93.36 4.49

Sky 2.34 0.25 0.39 2.27 94.85
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6. Conclusions and Future Work

In this paper, we explored the transfer learning from the perspective of network size and training
techniques with and without the use of synthetic data. We conclude that it is important to find
out the size of the network that performs best for the target domain rather than using the original
architecture as a whole. In doing so, we proposed a new light-weight network; a network well
suited for use in autonomous driving applications due to its low latency, which is initialized with
the pre-trained DeconvNet weights from the corresponding layers. Furthermore, we explored the
effects of using different synthetic datasets as the intermediate domain. As TL techniques are used
for these domains where training datasets are insufficiently available, generating and using synthetic
datasets is a good approach, which can help boost performance. While doing so, considering the target
domain characteristics as much as possible when generating the synthetic dataset will increase the TL
performance. We also conclude that an oversimple and/or too random dataset, as was the case for the
two-class synthetic and the four-class random synthetic dataset herein, can cause negative transfer.

The intermediate layers and their weights of DeconvNet are absent in the proposed light-weight
network. In order to understand the relationship among the layers and correspondence between layers
from source to target network, a detailed theoretical study is needed focusing the semantic meaning,
i.e., mapping between features across layers of the target and source domain. While there exists some
work to understand what the features means in different layers—e.g., initial layers extract lower level
features—for classification task, there is no such study for encoder–decoder architecture targeted for
segmentation task. In the future, we plan to study the detailed theoretical underlying regarding those
aspects for encoder–decoder-based networks. This would also shed light on how the proposed way of
transfer learning leads to better adaptability and performance. Furthermore, we plan to incorporate
our road segmentation model into the real off-road autonomous vehicle and study the creation of
occupancy grid with the segmentation results to support decisions of path planning.
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