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Abstract: Negative obstacles have long been a challenging aspect of autonomous navigation for
ground vehicles. However, as terrestrial lidar sensors have become lighter and less costly, they have
increasingly been deployed on small, low-flying UAV, affording an opportunity to use these sensors
to aid in autonomous navigation. In this work, we develop an analytical model for predicting the
ability of UAV or UGV mounted lidar sensors to detect negative obstacles. This analytical model
improves upon past work in this area because it takes the sensor rotation rate and vehicle speed into
account, as well as being valid for both large and small view angles. This analytical model is used to
predict the influence of velocity on detection range for a negative obstacle and determine a limiting
speed when accounting for vehicle stopping distance. Finally, the analytical model is validated with
a physics-based simulator in realistic terrain. The results indicate that the analytical model is valid
for altitudes above 10 m and show that there are drastic improvements in negative obstacle detection
when using a UAV-mounted lidar. It is shown that negative obstacle detection ranges for various
UAV-mounted lidar are 60–110 m, depending on the speed of the UAV and the type of lidar used. In
contrast, detection ranges for UGV mounted lidar are found to be less than 10 m.

Keywords: lidar; autonomy; navigation; UAV

1. Introduction

Negative obstacle detection has been a challenge for autonomously navigating (self-
driving) off-road unmanned ground vehicles (UGV) for several decades [1–4]. The difficulty
associated with detecting negative obstacles is primarily geometric. Early analysis showed
that the angle subtended by a positive obstacle at a range R from the sensor ∝1/R, whereas
the angle subtended by a negative obstacle ∝1/R2 [3]. A key development in UGV tech-
nology in the last decade has been the availability of low-cost, high resolution 3D lidar
systems [5]. These systems enable precise measurements of scene geometry that spurred
the development of new techniques for negative obstacle detection [6,7]. Concurrently,
the development of low-cost multi-rotor unmanned aerial vehicles (UAV) has enabled
multi-agent collaborative navigation using both UAV and UGV systems for sensing and
mapping the terrain [8,9].

In this work, a high-fidelity, physics-based simulation for lidar sensors [10] is used
to demonstrate the improvement in negative obstacle detection that can be made by
incorporating lidar data acquired from a low-flying UAV into autonomous UGV navigation.
In addition, a detailed analytical model for negative obstacle detection is developed. This
model improves upon past methods by implementing equations that are valid for all angles
(not just small angles) and taking into account the influence of vehicle speed and sensor
rotation. The model is cross-validated with physics-based lidar simulation using the MSU
Autonomous Vehicle Simulator (MAVS) [10].
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2. Related Work

There has been significant work on negative obstacle detection with lidar in the last
two decades. Dellenback et al. [11] showed how the elevated view angle from a UAV im-
proves negative obstacle detection in UAV-UGV cooperative teams. Later, Shang et al. [12]
showed how the inclusion of multiple lidar sensors mounted at different angles could
lead to better characterization of the negative obstacles. Kim et al. [13] demonstrated that
multiple UAV could be used to map terrain geometry with stereo vision. Novel techniques
have also been developed to estimate occlusion effects with ground-based lidar [14].

In addition, simulation capabilities for lidar have advanced in recent years, with Yun
et al. [15] using lidar simulation to optimize and virtualize scanning patterns for lidar in the
detection of total leaf area in tree crowns. Furthermore, Shan et al. [16] have recently pro-
posed a simulation-based method for achieving “super-resolution” by combining multiple
virtual lidar sensor feeds.

More recently,Nakano et al. [9], Ravi et al. [17] and Péntek et al. [18] have performed
fundamental analysis of lidar performance for various detection tasks, while Roberts et al.
[19], Azevedo et al. [20] and Gilhuly and Smith [21] investigated the capability of UAV-
mounted lidar in classifying ground points, detecting power lines, and terrain mapping,
respectively. Additionally, Kandath et al. [22] have shown the viability of incorporating
sensor information from a low-flying UAV into UGV path planning algorithms.

3. Analytical Model for Predicting Negative Obstacle Detection

Past work [3,6] has used geometric analysis to aid in the development of negative
obstacle detection algorithms and investigate their limitations. In this work, we extend
this past research to develop a predictive model for negative obstacle detection with lidar.
This predictive model can be used to assess the optimal deployment of UGV-mounted
or UAV-mounted lidar for negative obstacle detection. Table 1 summarizes the symbols
used in the following analysis, while Table 2 shows the sensor properties considered in
the model.

Table 1. Symbols used in this analysis.

Property Unit Symbol

Obstacle Width meters w
Obstacle Length meters l
Obstacle Depth meters d
Sensor Altitude meters h
Coordinate meters x
Velocity of Sensor m/s v
Angle to Far Obs. Edge rad θ f t
Angle to Near Obs. Edge rad θrt
Angle to Far Obs. Bottom rad θ f b
Angle to Near Obs. Bottom rad θrb
Horiz. Angle Subtended rad θh
Points/Scan, Far Wall # n′f (x)
Points/Scan, Near Wall # n′r(x)
Points/Scan, Obs. Bottom # n′b(x)
Total Points, Far Wall # n f (x)
Total Points, Near Wall # nr(x)
Total Points, Bottom # nb(x)
Total Scans vs. Distance # ns(x)
Res. of Surf. Discretization meters ∆
Surface Curvature m−1 κ
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Table 2. Sensor properties used in this analysis.

Property Unit Symbol

Scan Freq Hz f
Vertical Res rad δv
Horizontal Res rad δh
Max Scan Angle rad θmax
Min Scan Angle rad θmin
Mount Angle rad γ
Sensor Range m R

The geometry of the model is shown in the schematic in Figure 1. Note that mount
angle γ is defined with respect to nadir such that γ = 0 is downward-looking, γ = π/2
is forward looking, and γ = −π/2 is rearward looking. The sensor, indicated by the
green square, is mounted at an altitude of h meters above the ground. Note that this
analysis is valid for all ranges of h, so the results can be applied both to UAV- and UGV-
mounted sensors.

depth (d)

altitude (h)

width (w)

sensor
A

B C

D

E

FG

x=0
x

θrt
θ f b

θ f t

Figure 1. Side view of the ground coverage metric calculation. Points A, B, C, D, E, F, and G are defined to aid the reader in
following the derivations of Equations (1)–(3).

In the following analysis, equations for the number of points on the wall and floor/
bottom of a rectangular negative obstacle are developed. While prior models have pri-
marily focused on UGV mounted sensors where h << R, in which case the small angle
approximation can be used to simplify the equations, the following analysis does not make
this approximation and can therefore be used for both UAV- and UGV-mounted sensors.
For UGV navigation, the primary factor of interest is the range at which the negative
obstacle can be detected, which in turn places a limit on the speed of the vehicle based on
the stopping distance [3]. Therefore, this analysis focuses on the detection range of the
obstacle as the primary metric for performance.

For a sensor located at the horizontal coordinate x (where x is negative in Figure 1)
and vertical coordinate h, from triangle ABC, the angle between the sensor and the nearest
point on the negative obstacle, θrt, is given by

θrt(x) = tan−1(−x/h) (1)
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In addition, from triangle ABE, the angle between the sensor and the farthest point on the
obstacle, θ f t, is given by

θ f t(x) = tan−1((w− x)/h) (2)

The angle from the sensor to the farthest point on the bottom of the obstacle, θ f b, is
found from triangle AGD. However, the range must be restricted because point D will not
be visible when the sensor horizontal position exceeds w (the sensor is past the hole) or is
farther away than −hw/d (the front edge of the hole, C, obscures D). Therefore

θ f b(x) =


θrt(x), x ≤ −hw/d,4AGF

tan−1(w− x)/(h + d), −hw/d < x ≤ w,4AGD
θ f t(x), x > w,4ABE

(3)

Automotive lidar sensors typically have a fairly narrow vertical field-of-view, so the
view-angle calculations are constrained by the sensor field of view. Therefore, the sensor
limit function (Figure 2) is defined as

θlim(θ) = min(max(θ, γ + θmin), γ + θmax) (4)

θmin

γ
θmax

Figure 2. Depiction of the sensor mount angle, γ and the sensor limit function.

Lidar sensors also have a finite range. In order to account for the limits of the sensor
range R, the following calculation is only valid on the range x = [x0, x1], where

x0 = −
√

R2 − (h + d)2 (5)

and
x1 = w +

√
R2 − (h + d)2 (6)

For a single scan from a location x, the number of points on the far wall, n′f is given by

n′f (2D)(x) = (θ f t(x)− θ f b(x))/δv (7)

The number of points on the bottom of the negative obstacle, n′b, is given by

n′b(2D)(x) = (θ f b(x)− θrb(x))/δv (8)

where δv is the vertical angular resolution of the sensor.
While the previous calculations were done for the two dimensional case as shown in

Figure 1, it is straightforward to extend the calculations to 3D.
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If the horizontal resolution of the sensor is δh and the length of the hole perpendicular
to the path of travel is l (as depicted in Figure 3), then the horizontal angle subtended by
the sensor on the hole is

θh = 2 tan−1 (l/2x) (9)

The total number of points in two dimensions is then scaled by a factor of θh
δh

. With
this scaling, the number of points on the front wall in three dimensions is then

n′f (x) = θh(θ f t(x)− θ f b(x))/(δvδh) (10)

The number of points on the bottom of the negative obstacle in three dimensions, n′b,
is given by

n′b(x) = θh(θ f b(x)− θrt(x))/(δvδh) (11)

The variables n′f and n′b will be referred to as the instantaneous front and bottom
coverage indexes in the remainder of this work.

direction

w

l

Figure 3. Top-down view of the hole dimensions. The green square represents the sensor, the red
square represents the hole.

While the single scan totals are interesting, in most situations successive scans will be
merged into a point cloud. In this case, the number of points accumulated on the obstacle
as the vehicle moves toward it is of greater interest. Lower speeds will result in more
accumulated points as the sensor approaches the negative obstacle, while higher speeds
will result in fewer accumulated points. The number of scans for a sensor with a scan rate
of fs moving at a speed of v is

ns(x) =
⌈
(x− x0) fs

v

⌉
(12)

With this, the cumulative number of points as the sensor approaches the negative
obstacle is then given by

n f (x) =
ns(x)

∑
n=0

n′f (x0 + nv/ fs) (13)

for the far wall. For the bottom of the hole, the accumulated number of points is given by

nb(x) =
ns(x)

∑
n=0

n′b(x0 + nv/ fs) (14)

These will be referred to as the cumulative front and bottom coverage indexes in the
remainder of this work. In the following section, it will be shown that the performance of a
negative obstacle detection algorithm is related to these indexes.

4. Negative Obstacle Detection Method

Negative obstacles can be detected by calculating the curvature of the terrain surface
on a regular 2D grid. Regions on the grid that have a curvature that exceeds a certain
threshold are flagged as obstacles. Obstacle regions with a height below the local average
are flagged as negative obstacles.
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After each scan, points are registered to world coordinates using the current odometry
from the real-time kinematic localization sensor [23,24]. Each point is placed in a cell, and
only the lowest points are saved in the 2D array of surface heights, z(x, y). The curvature
at cell (i, j) is calculated using a five point stencil according the equation.

κij =
z(i + 1, j) + z(i− 1, j) + z(i, j + 1) + z(i, j− 1)− 4z(i, j)

∆2 (15)

where ∆ is the resolution of the grid. The resolution of the grid is chosen as an input
parameter to the model. For AGV navigation, the most relevant grid resolution should be
about the same as the diameter of the tire. Smaller grid cells will provide detail that is too
fine for navigation purposes, while larger cells may obscure the size and shape of relevant
obstacles. In this work, ∆ = 0.4 m. In this case, the maximum curvature that might be
measured for the negative obstacle is given by

κmax = 3d/∆2 (16)

The curvature threshold is therefore set to half the maximum value, κ0 = κmax/2.
From the diagram in Figure 1 it is clear that the minimum measured depth will be at the
point defined by θ f b, and this in turn will yield the maximum measured curvature

zmin(r) = h− w− r
tan(θ f b)

(17)

κmeasured = 3zmin/∆2 (18)

This places a constraint on the measurement system that can be quantified for a given
sensor mount angle and height with Equation (3).

zmin > κ0∆2/3 (19)

where zmin is the positive depth.
In addition, when comparing to Equations (13) and (14) to Equation (15), it is clear

that there must be at least 5 points covering the hole to perform the stencil calculation.
Taking the discretization of the surface into account, there must be a point density of 1/∆2

in the region of the hole. This implies that the threshold for detection with the curvature
method is

n f + nb > αlw/∆2 (20)

where α is the scale factor representing the required number of points per cell and must be
>1. In this work, α = 2 is used to ensure adequate point density.

Equations (19) and (20) define the requirements for detecting a negative obstacle using
the curvature-based method on a grid. In the following sections, it will be shown that
the predictions of this analytical model match the results of physics-based simulations of
negative obstacle detection with lidar. Figure 4 shows an example of the output of the
surface curvature calculation from Equation (15). The curvature was calculated using a
VLP-16 sensor mounted at 40 m of height.
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Figure 4. An example surface curvature calculation. Redder regions indicate areas of high curvature.
The obstacle region can be seen in the upper right of the image.

5. Simulated Experiments

The simulated scenario is a vehicle navigating through relatively flat terrain toward a
negative obstacle. As the vehicle moves toward the negative obstacle, scans are merged
into a single point cloud. The combined point cloud is processed at each step, and when
the obstacle is detected, the simulation is stopped and the detection range is recorded. The
test vehicle is shown near the hole in Figure 5. For the UAV case, the aerial vehicle moves
synchronously over the UGV at a prescribed altitude.

Figure 5. Rendering of the simulated scenario. The UGV moves toward the negative obstacle, a hole
which is large enough to damage or immobilize the vehicle.



Sensors 2021, 21, 3211 8 of 14

The simulated UGV was a Polaris MRZR4 with a roof mounted VLP-16 and simulated
RTK localization sensor. The mount height was 2.0 m. For the simulated UAV-mounted
lidar, we follow the setup defined in Nakano et al. [9], which had a Velodyne VLP-16
mounted underneath a DJI Matrice 600 Pro. Following the experiments in Nakano et al. [9],
the flight altitude was 40 m. The dynamics of the UAV were not simulated in these
experiments. Rather, a predefined flight plan was followed.

In this work, the performance parameter is the maximum detection range. In order
to optimize the detection range, the lidar sensor should be focused to maximize the look-
ahead distance based on the maximum sensor range and the mount height. In this case,
the sensor mount angle is given by

γ = cos−1 h/R (21)

Therefore, the mount angle was 88.85◦ for the UAV-mounted sensor and 68.2◦ for the
UGV-mounted sensor, which has a range of about 100 m.

The most interesting differentiators for negative obstacle detection are holes that are
large enough to cause potential damage or immobilization while still being small enough
to be difficult to detect. For the purposes of this study, the hole is defined with respect to
the size of the MRZR tire, which has a radius of approximately 0.3 m. In this case, a hole of
0.6 m depth and 1.0 m diameter may be large enough to cause immobilization while still
being difficult to detect.

For the obstacle detection algorithm, the grid size is set to ∆ = 0.4 m, ensuring that
the negative obstacle, which has a width of 1.0 m, is always covered by at least nine cells.
Since the hole has a depth of d = 0.6 m, the theoretical curvature threshold (Equation (19))
is κ0 = 5.625. Since the hole length and width are both 1.0 m, the point density threshold
(Equation (20)) is (n f + nb) > 12.5 total points. It is of note that while this algorithm makes
use of surface curvature, the basic requirement of measuring the surface curvature with
adequate point density is common to nearly all obstacle detection algorithms. Therefore,
the results of this method are relevant to other algorithms that measure surface slope
and/or curvature.

The MSU Autonomous Vehicle Simulator

The predictions of the analytic model are compared to physics-based simulations
with MAVS. MAVS uses physics-based lidar models to accurately predict lidar range
measurements and account for effects like interaction with vegetation [10] and rain [25].
MAVS has also recently been used to test the performance of obstacle detection algorithms
in dense vegetation [26] and to determine the optimal orientation of lidar sensors on an
autonomous UGV [27].

In the simulated experiments, a terrain was created with a hole matching the dimen-
sions described above. The hole was not perfectly rectangular but instead had smooth
curvature near the sides. The resolution of the surface mesh was 0.125 m. The vehicle
and sensor moved directly toward the hole at a constant speed. The initial position of
the vehicle and hole were varied by ± 0.125 m to ensure than no aliasing affects with the
overlay grid occurred. In addition, a small, spatially coherent roughness with a magnitude
of 0.05 m was applied to the surface so that it was not perfectly flat. This ensures that,
although the analytical model is for idealized conditions, the simulation has more real
world variability. Twenty-five trials were conducted at speeds of 2.5–17.5 m/s in 2.5 m/s
increments (≈18 m/s being the maximum speed of a DJI Matrice pro), for a total of 175
simulations each for both the UAV and UGV.
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6. Results

One important way to evaluate negative obstacle detection distance is to compare it to
stopping distance for a given speed. The standard formula for stopping distance is [3]

Rstop =
v2

2µg
+ vTr + B (22)

where v is vehicle velocity, g is gravitational acceleration, µ is surface friction, Tr is reaction
time, and B is a safety factor. Following Matthies and Rankin [3], in this work g = 9.8,
Tr = 0.25, B = 2.0, and µ = 0.65 for off-road surfaces. If the detection range is less than the
stopping distance, then this speed can be considered unsafe for the UGV.

Simulations were performed for three different sensors. Table 3 shows the model
parameters for each of these sensors. The UGV-mounted sensors had an elevation of two
meters, while, the UAV-mounted sensors had an elevation of 40 m. The tilt angle for
each sensor was calculated as a function of the mount height and maximum range using
Equation (21).

Table 3. Values for the sensors used in the experiments. All sensors UAV-mounted unless other-
wise noted.

Property VLP16 HDL32E OS1

Scan Freq (Hz) 10 10 10
Vertical Res (◦) 2.0 1.33 0.502
Horizontal Res (◦) 0.2 0.17 0.35
Max Scan Angle (◦) 15.0 10.6 15.8
Min Scan Angle (◦) −15.0 −30.7 −15.8
Max Range (m) 100.0 100.0 125.0

6.1. UGV-Mounted Sensors

For UGV-mounted sensors, the analytical model showed that at the two meter mount
height the detection range was quite short. In addition, there was little dependence on
speed, indicating that the detection is limited by geometry rather than point density for the
UGV-mounted sensor. Figure 6 shows the prediction of the analytical model (the red and
orange line and blue circles) as well as the result of the simulation (black line and marks).
While the analytical model predicted that UGV-mounted sensor would be able to detect
the obstacle at close range, the simulations showed that the UGV-mounted sensor could
not detect the negative obstacle at any speed or range. This is because the UGV-mounted
lidar did not meet the requirement of Equation (20); mounted at a relatively low elevation,
the sensor could not see enough of the bottom of the hole to adequately measure surface
curvature in the vicinity of the hole. Therefore, in the case of the UGV-mounted sensor, the
analytical model overestimated the ability of the sensor to detect the negative obstacle. One
possible explanation for this is the continuous nature of the analytical calculation versus
the discrete nature of real lidar scans. The model allows densities to be accumulated as
fractions of points, while, in real lidar scanned points are discrete. This difference may be
important in these edge cases where the detection range is quite low. Nevertheless, the
simulation validates the overall conclusion that the UGV-mounted lidar is not adequate for
negative obstacle detection.
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Figure 6. Results for the UGV-mounted sensors. The red line is the analytical model, the black
line is the simulation, and the green line is the stopping distance.The dashed black line and marks
are the result of the physics-based simulation. The detection range was uniformly 0 for all cases,
meaning the algorithm was unable to detect the negative obstacle in any case in the simulation for
the UGV-mounted sensor.

6.2. UAV-Mounted Sensors

Figures 7–9 show the results for the UAV simulation with the VLP-16, HDL-32E, and
OS1 sensors, respectively. In these figures, the red line is the prediction of the analytical
model, while the dashed black line is the result of multiple physics-based simulations. The
error bars are one standard deviation of the distribution of measured results for the 25 trials
of the physics-based simulation. The green line is the UGV stopping distance at this speed.
The overlap between the red line (model) and black line (simulation) in these figures
shows that the analytical model developed in this work provides a reasonable estimate
for detection range for a given lidar configuration for UAV mounted lidar. In addition,
when comparing to Figure 6, it is clear that the detection range for negative obstacle is
greatly increased by using a low-flying UAV. In contrast to the UGV-mounted sensors, the
detection range using the UAV-mounted lidar considerably exceeds the stopping distance
for all measured velocities.

These figures also demonstrate that the UAV-mounted sensors detect the negative
obstacle long before the minimum stopping distance, and that the analytical model and
simulation are in reasonable agreement. The results for all three sensors are summarized in
Table 4.
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Figure 7. Results for the UAV-mounted VLP-16 sensor. The red line is the analytical model, the black
line is the simulation, and the green line is the stopping distance.
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Figure 8. Results for the UAV-mounted HDL-32E sensor. The red line is the analytical model, the
black line is the simulation, and the green line is the stopping distance.
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Figure 9. Results for the UAV-mounted OS1 sensor. The red line is the analytical model, the black
line is the simulation, and the green line is the stopping distance.

Furthermore, of note is the detection probability, Pd. While the algorithm detected
the hole in most of the trials for each sensor, there was some variation between sensors.
The HDL-32E had Pd = 0.977, while the OS1 had Pd = 0.909. The VLP-16 had the lowest
probability of detection, with Pd = 0.886. There was not significant correlation between Pd
and speed.

Table 4. Detection ranges measured in physics-based simulations of UAV-mounted lidar with 25 trials
at each velocity. The one standard-deviation error bars are listed in parentheses.

Velocity (m/s) VLP-16 (m) HDL-32E (m) OS1 (m)

2.5 78.3 (11.6) 84.0 (4.2) 97.2 (10.6)
5.0 66.9 (6.0) 77.2 (6.7) 93.9 (9.8)
7.5 67.8 (2.1) 81.4 (5.8) 83.0 (10.7)
10.0 58.7 (9.5) 68.9 (8.5) 89.3 (7.9)
12.5 59.2 (3.0) 68.5 (8.8) 86.8 (10.8)
15.0 65.5 (6.3) 65.8 (10.8) 80.5 (8.1)
17.5 63.5 (8.2) 58.2 (9.8) 71.4 (7.3)
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7. Discussion

We note two main improvements of the presented analytical model as presented. The
first is the improvement over prior models. The second is the capability of the model to
distinguish between sensors by taking properties like the sensor resolution, field-of-view,
an scan rate into account.

As a point of comparison, consider the analytical model proposed by Matthies and
Rankin [3] and Larson and Trivedi [6]. Using the small angle approximation (valid for low
sensor altitudes), they propose an equation for estimating the opening angle viewable by
the sensor on the back of the negative obstacle (segment E-D in Figure 1). In the notation of
this paper, their proposed equation is

nprior
f (2D)

(x) =
hw

x(x + w)
(23)

This can be compared to Equation (7) in the current work. While the previous work
has the advantage of simplicity, the small-angle assumption is not valid for UAV-mounted
lidar. Neglecting the effects of sensor field-of-view, Figure 10 shows how using the full
trigonometric calculation presented in this work compare to using the small angle ap-
proximation. Figure 10 shows the difference, in degrees, between the two calculations.
This figure shows how the small angle approximation overpredicts the viewable angle
subtended by the negative obstacle for different sensor elevations.

0 10 20 30 40 50 60 70
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0.5

1

1.5

2

2.5

3
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Er
ro

r
(d

eg
re

es
)

1 Meter
11 Meters
21 Meters
31 Meters
41 Meters

Figure 10. Difference between the analytical model presented in this work and previous models
using the small-angle approximation for UGV mounted sensors. The error for different sensor mount
heights is shown, with the increase in error shown for sensors at higher elevation angle.

Because the analytical model defined in this work takes different sensor properties
into account, it can be used to compare sensors. Figure 11 shows the number of points on
the negative obstacle (Equation (10) + Equation (11)) versus the sensor range, for the same
scenario discussed in the previous section. The sensor parameters used in the analysis are
listed in Table 3.

Figure 11 shows that the OS1 lidar, which has the greatest range, detects the negative
obstacle from the farthest distance, while the HDL-32E has the greatest instantaneous
number of of points on the obstacle due to the high resolution in the horizontal direction.
This demonstrates how the equations presented in the analytical model can be used to
optimize sensor selection and deployment for negative obstacle detection.
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Figure 11. Predicted instantaneous number of points on negative obstacle vs. range for different sensors.

8. Conclusions

An analytical model for predicting the performance of automotive lidar for detecting
negative obstacles was developed in this work. The model is valid for all ranges of sensor
angles and heights. This model also takes the lidar rotation rate and platform velocity
into account. A negative obstacle detection algorithm based on curvature was developed
and, coupled to a physics-based simulator, used to cross-validate the analytical model.
The analytical model provides a fast, accurate way to estimate the optimal mount height
and orientation for a sensor to detect negative obstacles of a specified dimension. The
model also provides an estimated safe maximum speed for negative obstacle detection for
a given configuration. It was shown that negative obstacle detection ranges for the three
UAV-mounted lidar in this study are 60-110 m, depending on the speed of the UAV and
the type of lidar used. In contrast, detection ranges for UGV mounted lidar are found to be
less than 10 m.

A high-fidelity, physics-based simulator was coupled to a curvature-based obstacle
detection algorithm to validate the analytical model. Both the model and simulation show
the potential advantages of using a low-flying UAV to detect negative obstacles, providing
greater detection range and allowing the UGV to safely operate at higher speeds. The
simulation and model agreed well for higher altitudes, but diverged for lower altitudes
where the model predicted better detection capabilities than was found with the simulation.
Future work in this area will focus on extending the analytical model to include positive
obstacles and extended obstacles like vegetation.
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