Seasonal and Spatial Patterns of Surface Water in Large-Scale Treatment Wetlands with Different Vegetation Communities

Jing Hu, Lilit G. Vardanyan, Odi Villapando, Rupesh Bhomia, Patrick W. Inglett, Xiaofei Li, Gary Feng, K. Ramesh Reddy

Introduction

- The Stormwater Treatment Areas (STAs) were built strategically to remove excess phosphorus (P) and protect the natural Everglades areas.
- The STAs are predominantly colonized by two types of vegetation communities: emergent aquatic vegetation (EAV) and submerged aquatic vegetation (SAV), which vary considerably in key biogeochemical processes.

Objective of This Study

- Investigate the differences in seasonal changes and spatial patterns of surface water physicochemical properties within large-scale constructed wetlands dominated by different vegetation communities.

Experimental Approaches

- This study was conducted in two parallel flow ways (FWs) in STA-2, which is located between the Everglades Agricultural Areas and Water Conservation Areas (Fig 1).
 - FW1 is an EAV-dominated FW with primarily cattail (Typha domingensis) vegetation and patches of sawgrass (Cladium jamaicense) and water lily (Nymphaea odorata).
 - FW3 is SAV-dominated, with a mix of southern naiad (Najas guadalupensis), musk grass (Chara sp.), hydilla (Hydrilla verticillata), and covertal (Ceratophyllum demersum); approximately 20% of its treatment area in the south-eastern region populated by EAV (primarily Typha domingensis).

Surface water samples were obtained four times:
- Fall 2016 (September), Spring 2017 (March), Fall 2017 (October), and Spring 2018 (March).
- Of four samplings, two (Fall2016 and Spring2017) were before Hurricane Irma and two (Fall2017 and Spring2018) were after.
- Water samples were collected from three stations: near the inflow (IN), middle flow (MID), and outflow (OUT) of each flow-path (Fig 1).

Surface water samples were obtained four times:
- Fall 2016 (September), Spring 2017 (March), Fall 2017 (October), and Spring 2018 (March).
- Of four samplings, two (Fall2016 and Spring2017) were before Hurricane Irma and two (Fall2017 and Spring2018) were after.
- Water samples were collected from three stations: near the inflow (IN), middle flow (MID), and outflow (OUT) of each flow-path (Fig 1).

Results and Discussion

- TP concentrations showed a distinct gradient along the flow-path in both FWs (Fig 2). Specifically, SRP was removed highly efficiently from the water column compared to DOP and PP (Fig 3), possibly due to the fast biological uptake of SRP by microbes, algae, and vegetation.
- Higher TP concentration during Fall was possibly attributed to the greater inflow hydraulic and P loadings, and slower vegetation growth rate.
- FW3 (SAV) showed a greater TP increase after the hurricane than FW1 (EAV).

- TN did not show a consistent trend with the concentration generally decreased in Fall and increased or did not change in Spring along the flow-path (Fig 4).
- Inorganic N (NH₄-N and NO₃-N) accounted for a very small portion of TN, especially for FW1 (Fig 5). The inorganic N was rapidly depleted in both FWs as a result of high N demand in upstream areas.
- TN had a substantial increase in FW3 (SAV) which was mainly caused by the higher PON concentration.

- TN:TP significantly increased along the flow-path in both FWs, with the ratio at OUT and MID stations being approximately 9 and 2 times higher than at IN station in FW1 (EAV), and 5 and 3 times higher in FW3 (SAV) (Fig 6).
- TN:TP was significantly higher in Fall than Spring in FW1 (EAV) while the seasonal changes was not obvious in FW3 (SAV).
- In FW3 (SAV), TN:TP at OUT station decreased from 133-160 before-hurricane to 19-62 after-hurricane. The change was not as considerable in FW1 (EAV).

Conclusions

- Short-term monitoring and assessment of selected biogeochemical parameters including P and its forms in the water column showed distinct differences in internal spatial gradient and seasonal patterns of P and associated elements in EAV and SAV flow-ways of STAs.
- Seasonal variation in surface water quality was more obvious in EAV systems while SAV systems were susceptible to extreme events such as hurricane.
- A hybrid system with both EAV and SAV could be an option to maintain stability and high efficiency in removing nutrients and protect the downstream ecosystems.

ACKNOWLEDGEMENT:

This research work was conducted during 2015-2019 in compliance with the agreement between the South Florida Water Management District (SFWM/D) and the University of Florida (UF Contract #6600003031-W001).

Corresponding Authors:
Jing Hu (jinhg@msst.edu); M. Ramesh Reddy (krr@ufl.edu)