Senyurek, V., Farhad, M. M.,
Gurbuz, A.,
Kurum, M., & Adeli, A. (2022). Fusion of Reflected GPS Signals With Multispectral Imagery to Estimate Soil Moisture at Subfield Scale From Small UAS Platforms.
Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE.
15, 6843-6855.
DOI:10.1109/JSTARS.2022.3197794. [
Abstract] [
Document Site]
Senyurek, V.,
Gurbuz, A., &
Kurum, M. (2022). Deep Learning-Based Soil Moisture Retrieval in CONUS Using CYGNSS Delay-Doppler Maps.
Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE.
15, 6876-6881.
DOI:10.1109/JSTARS.2022.3196658. [
Abstract] [
Document Site]
Lei, F.,
Senyurek, V.,
Kurum, M.,
Gurbuz, A., Boyd, D.,
Moorhead, R. J., & Crow, W. T. (2022). Quasi-global Machine Learning-based Soil Moisture Estimates at High Spatio-temporal Scales Using CYGNSS and SMAP Observations.
Remote Sensing of Environment. Elsevier.
276, 113041.
DOI:10.1016/j.rse.2022.113041. [
Abstract] [
Document Site]
Senyurek, V., Lei, F.,
Gurbuz, A.,
Kurum, M., &
Moorhead, R. J. (2022). Machine Learning-based Global Soil Moisture Estimation Using GNSS-R.
SoutheastCon 2022. Mobile, AL, USA: IEEE. 434-435.
DOI:10.1109/SoutheastCon48659.2022.9764039. [
Abstract] [
Document Site]
Senyurek, V., Farhad, M.,
Gurbuz, A.,
Kurum, M., &
Moorhead, R. J. (2022). SoilMoistureMapper: a GNSS-R Approach for Soil Moisture Retrieval on UAV.
UAAAI-22 AI for Agriculture and Food Systems (AIAFS) Workshop. Vancouver, BC (Canada). [
Abstract] [
Document Site]